396 research outputs found

    First-Principles Study of Substitutional Metal Impurities in Graphene: Structural, Electronic and Magnetic Properties

    Get PDF
    We present a theoretical study using density functional calculations of the structural, electronic and magnetic properties of 3d transition metal, noble metal and Zn atoms interacting with carbon monovacancies in graphene. We pay special attention to the electronic and magnetic properties of these substitutional impurities and found that they can be fully understood using a simple model based on the hybridization between the states of the metal atom, particularly the d shell, and the defect levels associated with an unreconstructed D3h carbon vacancy. We identify three different regimes associated with the occupation of different carbon-metal hybridized electronic levels: (i) bonding states are completely filled for Sc and Ti, and these impurities are non-magnetic; (ii) the non-bonding d shell is partially occupied for V, Cr and Mn and, correspondingly, these impurties present large and localized spin moments; (iii) antibonding states with increasing carbon character are progressively filled for Co, Ni, the noble metals and Zn. The spin moments of these impurities oscillate between 0 and 1 Bohr magnetons and are increasingly delocalized. The substitutional Zn suffers a Jahn-Teller-like distortion from the C3v symmetry and, as a consequence, has a zero spin moment. Fe occupies a distinct position at the border between regimes (ii) and (iii) and shows a more complex behavior: while is non-magnetic at the level of GGA calculations, its spin moment can be switched on using GGA+U calculations with moderate values of the U parameter.Comment: 13 figures, 4 tables. Submitted to Phys. Rev. B on September 26th, 200

    First-principles study of the atomic and electronic structure of the Si(111)-(5x2-Au surface reconstruction

    Full text link
    We present a systematic study of the atomic and electronic structure of the Si(111)-(5x2)-Au reconstruction using first-principles electronic structure calculations based on the density functional theory. We analyze the structural models proposed by Marks and Plass [Phys. Rev. Lett.75, 2172 (1995)], those proposed recently by Erwin [Phys. Rev. Lett.91, 206101 (2003)], and a completely new structure that was found during our structural optimizations. We study in detail the energetics and the structural and electronic properties of the different models. For the two most stable models, we also calculate the change in the surface energy as a function of the content of silicon adatoms for a realistic range of concentrations. Our new model is the energetically most favorable in the range of low adatom concentrations, while Erwin's "5x2" model becomes favorable for larger adatom concentrations. The crossing between the surface energies of both structures is found close to 1/2 adatoms per 5x2 unit cell, i.e. near the maximum adatom coverage observed in the experiments. Both models, the new structure and Erwin's "5x2" model, seem to provide a good description of many of the available experimental data, particularly of the angle-resolved photoemission measurements

    Transport properties of armchair graphene nanoribbon junctions between graphene electrodes

    Full text link
    The transmission properties of armchair graphene nanoribbon junctions between graphene electrodes are investigated by means of first-principles quantum transport calculations. First the dependence of the transmission function on the size of the nanoribbon has been studied. Two regimes are highlighted: for small applied bias transport takes place via tunneling and the length of the ribbon is the key parameter that determines the junction conductance; at higher applied bias resonant transport through HOMO and LUMO starts to play a more determinant role, and the transport properties depend on the details of the geometry (width and length) of the carbon nanoribbon. In the case of the thinnest ribbon it has been verified that a tilted geometry of the central phenyl ring is the most stable configuration. As a consequence of this rotation the conductance decreases due to the misalignment of the pipi orbitals between the phenyl ring and the remaining part of the junction. All the computed transmission functions have shown a negligible dependence on different saturations and reconstructions of the edges of the graphene leads, suggesting a general validity of the reported results

    Effect of electron and hole doping on the structure of C, Si, and S nanowires

    Full text link
    We use ab initio density functional calculations to study the effect of electron and hole doping on the equilibrium geometry and electronic structure of C, Si, and S monatomic wires. Independent of doping, all these nanowires are found to be metallic. In absence of doping, C wires are straight, whereas Si and S wires display a zigzag structure. Besides two preferred bond angles of 60 deg and 120 deg in Si wires, we find an additional metastable bond angle of 90 deg in S wires. The equilibrium geometry and electronic structure of these nanowires is shown to change drastically upon electron and hole doping.Comment: 5 pages including 5 figure

    Universal Magnetic Properties of sp3^3-type Defects in Covalently Functionalized Graphene

    Get PDF
    Using density-functional calculations, we study the effect of sp3^3-type defects created by different covalent functionalizations on the electronic and magnetic properties of graphene. We find that the induced magnetic properties are {\it universal}, in the sense that they are largely independent on the particular adsorbates considered. When a weakly-polar single covalent bond is established with the layer, a local spin-moment of 1.0 μB\mu_B always appears in graphene. This effect is similar to that of H adsorption, which saturates one pzp_z orbital in the carbon layer. The magnetic couplings between the adsorbates show a strong dependence on the graphene sublattice of chemisorption. Molecules adsorbed at the same sublattice couple ferromagnetically, with an exchange interaction that decays very slowly with distance, while no magnetism is found for adsorbates at opposite sublattices. Similar magnetic properties are obtained if several pzp_z orbitals are saturated simultaneously by the adsorption of a large molecule. These results might open new routes to engineer the magnetic properties of graphene derivatives by chemical means

    Electronic stopping power in a narrow band gap semiconductor from first principles

    Get PDF
    © 2015 American Physical Society. The direction and impact parameter dependence of electronic stopping power, along with its velocity threshold behavior, is investigated in a prototypical small-band-gap semiconductor. We calculate the electronic stopping power of H in Ge, a semiconductor with relatively low packing density, using time-evolving time-dependent density-functional theory. The calculations are carried out in channeling conditions with different impact parameters and in different crystal directions for projectile velocities ranging from 0.05 to 0.6 atomic units. The satisfactory comparison with available experiments supports the results and conclusions beyond experimental reach. The calculated electronic stopping power is found to differ in different crystal directions; however, strong impact parameter dependence is observed only in one of these directions. The distinct velocity threshold observed in experiments is well reproduced, and its nontrivial relation with the band gap follows a perturbation theory argument surprisingly well. This simple model is also successful in explaining why different density functionals give the same threshold even with substantially different band gaps.We are thankful to M. A. Zeb, A. Arnau, J. I. Juaristi, J. M. Pitarke, P. Bauer, D. Roth, and A. Correa for useful discussions. The financial support from MINECO-Spain through Plan Nacional Grant No. FIS2012-37549-C05-01, FPI Ph.D. Fellowship Grant No. BES-2013-063728, and Grant No. MAT2013-46593-C6-2-P along with the EU Grant “ElectronStopping” in the Marie Curie CIG Program is duly acknowledged. SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) support is gratefully acknowledged.

    Electronic structure interpolation via atomic orbitals

    Full text link
    We present an efficient scheme for accurate electronic structure interpolations based on the systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse kk-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals (LCAO) algorithms. We find that usually 16 -- 25 orbitals per atom can give an accuracy of about 10 meV compared to the full {\it ab initio} calculations. The current scheme has several advantages over the existing interpolation schemes. The scheme is easy to implement and robust which works equally well for metallic systems and systems with complex band structures. Furthermore, the atomic orbitals have much better transferability than the Shirley's basis and Wannier functions, which is very useful for the perturbation calculations

    Structural models for the Si(553)-Au atomic chain reconstruction

    Full text link
    Recent photoemission experiments on the Si(553)-Au reconstruction show a one-dimensional band with a peculiar ~1/4 filling. This band could provide an opportunity for observing large spin-charge separation if electron-electron interactions could be increased. To this end, it is necessary to understand in detail the origin of this surface band. A first step is the determination of the structure of the reconstruction. We present here a study of several structural models using first-principles density functional calculations. Our models are based on a plausible analogy with the similar and better known Si(557)-Au surface, and compared against the sole structure proposed to date for the Si(553)-Au system [Crain JN et al., 2004 Phys. Rev. B 69 125401 ]. Results for the energetics and the band structures are given. Lines for the future investigation are also sketched
    corecore